Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Biosensors (Basel) ; 13(2)2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2215584

ABSTRACT

The COVID-19 outbreak has caused panic around the world as it is highly infectious and has caused about 5 million deaths globally. A robust wireless non-contact vital signs (NCVS) sensor system that can continuously monitor the respiration rate (RR) and heart rate (HR) of patients clinically and remotely with high accuracy can be very attractive to healthcare workers (HCWs), as such a system can not only avoid HCWs' close contact with people with COVID-19 to reduce the infection rate, but also be used on patients quarantined at home for telemedicine and wireless acute-care. Therefore, we developed a custom Doppler-based NCVS radar sensor system operating at 2.4 GHz using a software-defined radio (SDR) technology, and the novel biosensor system has achieved impressive real-time RR/HR monitoring accuracies within approximately 0.5/3 breath/beat per minute (BPM) on student volunteers tested in our engineering labs. To further test the sensor system's feasibility for clinical use, we applied and obtained an Internal Review Board (IRB) approval from Texas Tech University Health Sciences Center (TTUHSC) and have used this NCVS monitoring system in a doctor's clinic at TTUHSC; following testing on 20 actual patients for a small-scale clinical trial, we have found that the system was still able to achieve good NCVS monitoring accuracies within ~0.5/10 BPM across 20 patients of various weight, height and age. These results suggest our custom-designed NCVS monitoring system may be feasible for future clinical use to help combatting COVID-19 and other infectious diseases.


Subject(s)
COVID-19 , Humans , Feasibility Studies , Vital Signs , Respiratory Rate , Monitoring, Physiologic/methods , Heart Rate , Software
2.
Front Physiol ; 13: 905931, 2022.
Article in English | MEDLINE | ID: covidwho-1933746

ABSTRACT

Background: To conduct a rapid preliminary COVID-19 screening prior to polymerase chain reaction (PCR) test under clinical settings, including patient's body moving conditions in a non-contact manner, we developed a mobile and vital-signs-based infection screening composite-type camera (VISC-Camera) with truncus motion removal algorithm (TMRA) to screen for possibly infected patients. Methods: The VISC-Camera incorporates a stereo depth camera for respiratory rate (RR) determination, a red-green-blue (RGB) camera for heart rate (HR) estimation, and a thermal camera for body temperature (BT) measurement. In addition to the body motion removal algorithm based on the region of interest (ROI) tracking for RR, HR, and BT determination, we adopted TMRA for RR estimation. TMRA is a reduction algorithm of RR count error induced by truncus non-respiratory front-back motion measured using depth-camera-determined neck movement. The VISC-Camera is designed for mobile use and is compact (22 cm × 14 cm × 4 cm), light (800 g), and can be used in continuous operation for over 100 patients with a single battery charge. The VISC-Camera discriminates infected patients from healthy people using a logistic regression algorithm using RR, HR, and BT as explanatory variables. Results are available within 10 s, including imaging and processing time. Clinical testing was conducted on 154 PCR positive COVID-19 inpatients (aged 18-81 years; M/F = 87/67) within the initial 48 h of hospitalization at the First Central Hospital of Mongolia and 147 healthy volunteers (aged 18-85 years, M/F = 70/77). All patients were on treatment with antivirals and had body temperatures <37.5°C. RR measured by visual counting, pulsimeter-determined HR, and BT determined by thermometer were used for references. Result: 10-fold cross-validation revealed 91% sensitivity and 90% specificity with an area under receiver operating characteristic curve of 0.97. The VISC-Camera-determined HR, RR, and BT correlated significantly with those measured using references (RR: r = 0.93, p < 0.001; HR: r = 0.97, p < 0.001; BT: r = 0.72, p < 0.001). Conclusion: Under clinical settings with body motion, the VISC-Camera with TMRA appears promising for the preliminary screening of potential COVID-19 infection for afebrile patients with the possibility of misdiagnosis as asymptomatic.

3.
Comput Biol Med ; 141: 105003, 2022 02.
Article in English | MEDLINE | ID: covidwho-1517110

ABSTRACT

BACKGROUND: The coronavirus disease (COVID-19) effected a global health crisis in 2019, 2020, and beyond. Currently, methods such as temperature detection, clinical manifestations, and nucleic acid testing are used to comprehensively determine whether patients are infected with the severe acute respiratory syndrome coronavirus 2. However, during the peak period of COVID-19 outbreaks and in underdeveloped regions, medical staff and high-tech detection equipment were limited, resulting in the continued spread of the disease. Thus, a more portable, cost-effective, and automated auxiliary screening method is necessary. OBJECTIVE: We aim to apply a machine learning algorithm and non-contact monitoring system to automatically screen potential COVID-19 patients. METHODS: We used impulse-radio ultra-wideband radar to detect respiration, heart rate, body movement, sleep quality, and various other physiological indicators. We collected 140 radar monitoring data from 23 COVID-19 patients in Wuhan Tongji Hospital and compared them with 144 radar monitoring data from healthy controls. Then, the XGBoost and logistic regression (XGBoost + LR) algorithms were used to classify the data according to patients and healthy subjects. RESULTS: The XGBoost + LR algorithm demonstrated excellent discrimination (precision = 92.5%, recall rate = 96.8%, AUC = 98.0%), outperforming other single machine learning algorithms. Furthermore, the SHAP value indicates that the number of apneas during REM, mean heart rate, and some sleep parameters are important features for classification. CONCLUSION: The XGBoost + LR-based screening system can accurately predict COVID-19 patients and can be applied in hotels, nursing homes, wards, and other crowded locations to effectively help medical staff.


Subject(s)
COVID-19 , Humans , Logistic Models , Monitoring, Physiologic , Radar , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL